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Abstract:

Inventory management under uncertainty is a central challenge in operations research,
particularly when dealing with lost sales and stochastic supply constraints. In such settings,
traditional optimization techniques that assume full knowledge of demand and supply
distributions often fail to perform well in practice. This paper introduces a regret-minimizing
approach to inventory control that evaluates performance relative to the best fixed policy in
hindsight, rather than relying on expected cost minimization. The framework is designed to
be adaptive, data-driven, and robust to real-time variability in both supply availability and
customer demand. We explore the theoretical motivations for using regret as a performance
metric, analyze structural characteristics of effective policies, and discuss real-world
applications such as humanitarian logistics and e-commerce fulfillment. By focusing on
learning-based strategies, this work bridges the gap between online decision theory and
practical inventory systems in uncertain environments.
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I. Introduction:

In today’s volatile and demand-driven markets, inventory systems must operate under
significant uncertainty. Two critical factors complicate inventory decisions: the risk of lost
sales when demand exceeds available stock, and the presence of stochastic supply constraints
due to disruptions, supplier unreliability, or production variability. Traditional inventory
models often rely on optimizing expected costs under known probabilistic distributions,
assuming a level of predictability that is rarely present in dynamic, real-world scenarios. As a
result, there is a growing need for decision frameworks that can adapt in real time, without
requiring complete statistical knowledge of the environment[1]. This paper proposes a regret-
minimizing approach to inventory management, focusing on policies that learn from
experience and remain robust across a wide range of uncertain conditions.
Classical inventory theory has provided foundational models such as the newsvendor
problem and base-stock policies, which assume stable supply and demand characteristics.
However, these models typically prioritize long-run average performance and require
accurate parameter estimates to be effective. In contrast, many operational settings—such as
disaster relief, e-commerce flash sales, or pandemic supply chains—are characterized by
supply shocks and non-recoverable demand losses. Lost sales, in particular, represent a
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permanent revenue loss and are not easily mitigated by future replenishments. Meanwhile,
stochastic supply constraints may arise from unpredictable lead times, supplier failures, or
logistical bottlenecks. In these environments, the inability to backorder and the presence of
highly variable restocking events challenge the effectiveness of traditional models. Against
this backdrop, regret minimization emerges as a compelling alternative—offering a
performance benchmark that does not depend on perfect foresight or fixed distributions, but
instead compares online decisions to the best strategy in hindsight. This theoretical shift sets
the stage for the development of adaptive and resilient inventory control systems.

Il.  Problem Context: Lost Sales and Supply Uncertainty

Inventory management under the dual pressures of lost sales and uncertain supply presents a
fundamentally different challenge compared to classical stock control problems. In systems
where backordering is not an option, any unmet demand results in an irreversible loss—
whether in the form of customer dissatisfaction, lost revenue, or reputational damage. This is
especially critical in industries dealing with perishable goods, high-speed retail environments,
or emergency response logistics, where the window for fulfilling demand is narrow and
inflexible[2].

Compounding the issue is the stochastic nature of supply. Unlike models that assume fixed
lead times and reliable restocking, real-world supply chains often experience unpredictable
disruptions—caused by transportation delays, supplier inconsistencies, geopolitical factors, or
natural disasters. These uncertainties make it difficult to ensure timely replenishment, leading
to potential stockouts even when demand forecasts are accurate. Furthermore, supply
constraints may be quantity-based (e.g., limited restock sizes), temporal (e.g., variable lead
times), or structural (e.g., supplier unreliability), each of which complicates inventory
planning.

Together, lost sales and stochastic supply form a high-stakes environment where traditional
optimization methods, which depend on known distributions or long-run expectations, may
fail to deliver robust outcomes. In such cases, decision-makers require models that adapt
quickly, learn from past outcomes, and perform well even in worst-case scenarios[3]. This is
the motivation for exploring regret-minimizing policies, which emphasize resilience and
adaptability over static optimality.

I11.  Adaptive Inventory Policies and Learning under Uncertainty:

In environments characterized by both lost sales and uncertain supply, static or rule-based
inventory strategies often fall short. These models typically assume stable parameters and
predictable system behavior, but in reality, demand and supply patterns are volatile, evolving,
and sometimes adversarial. This uncertainty necessitates a shift from fixed policies toward
adaptive strategies that learn and improve over time. Adaptive inventory policies leverage
real-time data, historical observations, and feedback signals (such as stockouts or overages)
to inform future decisions. These policies are not only reactive but also predictive, evolving
with the operational landscape[4].
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Central to this adaptivity is the integration of online learning frameworks. Methods such as
multi-armed bandits, stochastic gradient-based updates, or reinforcement learning enable the
system to continuously refine its inventory decisions based on cumulative experience. For
example, a regret-minimizing policy might gradually learn the most effective order quantities
by evaluating how different choices performed in terms of lost sales or surplus, while
balancing the risk of over-ordering against potential demand shocks. Unlike traditional
models that require predefined probabilistic inputs, these learning-based approaches adapt
dynamically and operate effectively even when the underlying distributions are unknown or
change over time.

Moreover, these policies can be designed to operate under partial observability—where
information about the exact supply disruption or true demand is incomplete. They employ
surrogate signals such as observed sales, fill rates, or unmet orders to approximate
environmental parameters[5]. This makes them particularly suitable for real-world
applications where full system transparency is rarely available. Ultimately, adaptive policies
provide the flexibility and resilience needed to maintain performance across a wide range of
uncertain, high-risk scenarios, making them essential tools in modern supply chain
optimization.

IV. Structural Properties of Regret-Minimizing Policies:

Regret-minimizing inventory policies possess distinct structural features that differentiate
them from classical optimization-based approaches. Rather than focusing solely on
minimizing expected cost or maximizing service level under known parameters, these
policies are designed to perform well relative to the best fixed policy selected in hindsight,
regardless of the specific realization of demand and supply sequences. This shift in objective
induces certain recurring structural characteristics, which contribute to their robustness and
adaptability.

One key property is adaptive ordering thresholds. Unlike static reorder points or fixed base-
stock levels, regret-minimizing policies dynamically adjust order quantities based on
observed performance gaps—particularly from prior stockouts (indicative of under-ordering)
or excess inventory (indicative of over-ordering). This continuous refinement leads to a
responsive policy that evolves with environmental feedback, particularly important under
conditions where both demand and supply variability are significant.

Another notable structure is the use of conservative exploration. These policies tend to avoid
extreme decisions unless supported by sufficient empirical evidence, balancing the trade-off
between learning and performance. For example, in the face of uncertain supply reliability,
the policy may begin with cautious ordering and gradually increase order quantities as
confidence in supply fulfillment improves[6]. This “optimism under uncertainty” principle
helps prevent large losses early in the learning process while enabling gradual convergence to
effective decision rules.
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Additionally, many regret-minimizing frameworks utilize implicit regularization, which
encourages stability in ordering decisions. This reduces the sensitivity of the policy to short-
term fluctuations or outlier events, which is crucial in volatile environments. Some
approaches also embed mechanisms to smooth updates—such as exponential moving
averages or perturbation techniques—to prevent overreaction to noise.

Lastly, the non-anticipatory nature of these policies—making decisions without assuming
future knowledge—aligns them closely with real-world operational constraints. Despite their
simplicity in form, these policies can approximate complex, optimal behaviors through
iterative refinement. Their structural emphasis on feedback loops, cautious updates, and
performance benchmarking enables high resilience and consistent competitiveness, even
under adversarial or non-stationary supply chain conditions. This figure,1 simulates the
structural behavior of a regret-minimizing inventory policy under lost sales and stochastic
supply constraints.

Adaptive Regret-Minimizing Inventory Policy Simulation
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Figure 1. Adaptive inventory control with regret minimization under stochastic supply and lost sales.

V. Case Study Discussion: Regret-Aware Humanitarian Logistics:

Humanitarian logistics presents a uniquely high-stakes environment for inventory decision-
making, where the costs of misallocation are not just financial but human. In disaster
response operations—such as those following earthquakes, floods, or pandemics—supply
chains face severe constraints: uncertain transportation routes, unpredictable donor supplies,
and rapidly fluctuating demand across affected regions. Complicating matters further, many
aid items (like food, water, and medicine) are perishable, and the inability to backorder leads
directly to unmet human needs. In such contexts, traditional optimization models are often
impractical due to the lack of reliable data and the urgency of decisions[7].

Regret-minimizing inventory policies offer a powerful alternative. By evaluating decisions
against the best possible policy in hindsight, they allow for adaptive learning and real-time
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responsiveness, even under severe informational and logistical uncertainty. For example,
consider a humanitarian organization tasked with allocating limited supplies across multiple
regions with varying degrees of disaster impact. A regret-aware policy might begin with
conservative allocations and gradually shift resources based on observed shortfalls, unmet
needs, and supply bottlenecks—effectively learning which regions are persistently
underserved without relying on precise demand forecasts.

Such policies also support equitable distribution by embedding fairness constraints into the
regret function—ensuring that no region consistently receives disproportionately low
resources. Moreover, they align with the operational realities of humanitarian work, where
decision-makers must act quickly and justifiably, often with incomplete data and little room
for failure. By tracking regret over time, organizations can audit and justify their actions,
improving transparency and trust among stakeholders. This case underscores the practical
significance of regret-aware models as not just mathematically elegant, but ethically and
operationally vital in real-world crisis response[8].

V1. Implications for Policy Design and Real-Time Systems:

The integration of regret-minimizing principles into inventory management has significant
implications for both policy design and the architecture of real-time decision-support
systems. Unlike static optimization approaches, regret-aware policies enable systems to make
decisions that adaptively balance performance across time, without requiring complete
knowledge of underlying demand and supply distributions. This adaptability is crucial for
modern logistics and supply chains that must operate under uncertainty, respond to sudden
shifts in market behavior, and recover from disruptions with minimal delay.

From a policy design perspective, regret minimization encourages a shift toward dynamic,
feedback-driven rules rather than fixed thresholds or forecast-based models. These policies
promote resilience by continuously adjusting order quantities and allocations based on
observed outcomes, such as stockouts or overstock events. For regulators and organizational
leaders, this approach supports the creation of policies that are robust to unknowns,
inherently self-correcting, and less sensitive to estimation errors or modeling inaccuracies.

In real-time systems, such as automated inventory platforms, warehouse robots, or edge Al
logistics controllers, regret-minimizing algorithms can be embedded to support on-the-fly
decision-making. These systems can learn from transaction data, monitor real-time inventory
levels, and update ordering behavior with minimal computational overhead. Because regret-
based models do not rely on a fixed statistical forecast, they are especially well-suited to
environments with non-stationary dynamics—such as seasonal demand shifts, sudden supply
shocks, or external crises.

Moreover, regret tracking offers auditable and explainable metrics for decision outcomes.
Unlike black-box models that produce optimal solutions without transparency, regret-aware
systems can justify their choices in terms of performance relative to ideal alternatives—an
increasingly important feature in regulated industries, ESG reporting, and public-sector
operations[9]. Overall, the deployment of regret-minimizing policies into real-time systems
signifies a move toward smarter, fairer, and more accountable inventory management
frameworks in uncertain environments.
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VII. Limitations and Open Challenges:

While regret-minimizing inventory policies offer a compelling framework for managing
uncertainty in dynamic and high-stakes environments, several limitations and open
challenges remain that must be addressed before widespread adoption is feasible[10].

One key limitation lies in scalability and computational complexity. Many regret-minimizing
algorithms, particularly those inspired by online learning or adversarial frameworks, require
continuous feedback processing and policy updates. In large-scale systems involving multiple
products, regions, or service levels, the computational overhead can grow rapidly, especially
when real-time response is required. Efficient approximations or hybrid models that combine
regret minimization with more scalable heuristics may be necessary in practice.

Another challenge is partial observability and noisy feedback. In many operational settings,
true demand is not fully observable—particularly when sales are lost due to stockouts—and
supply fulfillment may be uncertain or delayed. This incomplete information can make it
difficult for the policy to accurately estimate regret or learn meaningful patterns. Designing
algorithms that are robust to noisy, sparse, or delayed feedback remains an important area of
future research[11].

Additionally, balancing short-term and long-term objectives is nontrivial. While regret
minimization focuses on relative performance over time, it may not always align with
immediate cost minimization or service-level goals, especially when supply chain partners or
clients prioritize short-term KPIs. Integrating regret-based objectives with other performance
metrics—such as holding costs, lead time penalties, or fairness constraints—requires careful
multi-objective design.

Furthermore, domain-specific constraints such as perishability, shelf-life regulations, or
supplier contracts may limit the applicability of generic regret-minimizing frameworks.
Tailoring policies to account for such constraints without losing the generality and adaptivity
of regret-based reasoning is an open design question[12].

VIIlI. Conclusion:

Regret-minimizing inventory policies represent a significant advancement in managing
uncertainty within complex, dynamic supply chain environments. By shifting the focus from
optimizing expected outcomes to minimizing performance loss relative to the best hindsight
strategy, these policies offer a more resilient and adaptive approach—particularly valuable in
contexts with lost sales and stochastic supply. Unlike traditional models, they do not require
full knowledge of demand or supply distributions, making them well-suited for real-time,
data-scarce, or rapidly changing operational settings. From humanitarian logistics to
commercial inventory systems, the integration of regret-aware strategies enables more
responsive, fair, and accountable decision-making. However, realizing their full potential
requires overcoming challenges related to scalability, partial observability, and integration

Page | 15 Journal of Integrated Research



)i
N \'4 JOURNALS
A\ | Y INTEGRATED

\,Q\! RESEARCH

Volume- VI, Issue-lll, 2025

with real-world constraints. As supply chains become increasingly digital and data-driven,
regret-minimizing frameworks are poised to play a foundational role in the next generation of
intelligent inventory control systems.
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