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Abstract 

The rapid evolution of cyber threats and the complexity of dynamic attack environments have 

rendered traditional rule-based security systems increasingly ineffective. This research 

explores the application of reinforcement learning (RL) for the development of intelligent, 

autonomous cyber defense mechanisms capable of adapting in real time to evolving attack 

strategies. By modeling cybersecurity as a sequential decision-making problem, RL agents 

learn optimal defense strategies through trial-and-error interactions within simulated 

environments. We present a comprehensive framework integrating deep reinforcement 

learning (DRL) with network intrusion detection and response systems to demonstrate the 

viability of adaptive, automated defense. The research includes the design of training 

environments using adversarial models, evaluation of agent performance under various attack 

scenarios, and comparative analysis against static defense systems. Results reveal significant 

improvements in detection accuracy, response efficiency, and resilience against novel threats, 

underscoring the potential of RL as a core enabler of future cyber defense automation. 
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I. Introduction 

 

The complexity and dynamism of modern cyber threats demand adaptive defense strategies 

that go beyond the capabilities of static rule-based systems. Attackers continually evolve their 

techniques, leveraging zero-day exploits, polymorphic malware, and multi-stage attacks that 

make detection and mitigation increasingly challenging. Traditional cybersecurity 
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frameworks, while still essential, often suffer from delayed response, high false-positive 

rates, and an inability to generalize across previously unseen threats [1]. As the scale and 

speed of attacks grow, there is a critical need for intelligent systems capable of making 

autonomous decisions under uncertainty. Reinforcement learning offers a compelling solution 

to this problem by enabling systems to learn optimal defense strategies through continuous 

interaction with a simulated or real environment. In RL, an agent learns by receiving rewards 

or penalties for its actions, gradually improving its behavior to maximize long-term benefits. 

This paradigm aligns naturally with cyber defense tasks where the environment is often non-

deterministic, adversarial, and partially observable. From adaptive firewall management to 

intrusion response and deception tactics, RL can dynamically adjust policies based on real-

time feedback and threat evolution. 

Recent advancements in deep reinforcement learning (DRL) have expanded the applicability 

of RL to high-dimensional state spaces, enabling models to process complex network traffic 

patterns and system logs. Techniques such as Deep Q-Networks (DQN), Proximal Policy 

Optimization (PPO), and Actor-Critic models have shown promise in cybersecurity 

applications. However, the integration of these techniques into practical security systems 

presents unique challenges, including reward engineering, environment simulation, safe 

exploration, and scalability [2]. The objective of this study is to investigate how DRL can be 

employed effectively for automated cyber defense in environments characterized by dynamic, 

evolving attacks. In this paper, we present a framework that models cyber defense as a 

Markov Decision Process (MDP) and utilize DRL to train agents in a simulated network 

environment containing diverse attack vectors.  

By simulating red-team (attacker) versus blue-team (defender) scenarios, we evaluate the 

agent's ability to learn proactive and reactive defense strategies. Our contributions include a 

novel simulation setup, the implementation of multiple RL algorithms, and a comprehensive 

evaluation of their performance under variable attack scenarios. We also analyze how reward 

structure and environmental complexity influence learning and generalization. This research 

aims to bridge the gap between theoretical RL models and their practical deployment in real-

world cyber defense infrastructures. By demonstrating tangible benefits in detection, 

mitigation, and adaptation, we make a case for embedding RL agents within security 

orchestration, automation, and response (SOAR) platforms [3]. Ultimately, we envision a 
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future where cybersecurity is powered by continuously learning agents that evolve alongside 

the threats they are designed to defend against. 

II. Methodology 

 

To investigate reinforcement learning in automated cyber defense, we designed a simulated 

network environment using the Cyber BattleSim toolkit—a Microsoft open-source 

environment for training RL agents in cybersecurity tasks. The simulation consists of a multi-

host network topology with various services, vulnerabilities, and attacker behaviors modeled. 

We incorporated multiple attack vectors such as privilege escalation, lateral movement, data 

exfiltration, and denial-of-service, allowing for the dynamic representation of real-world 

attack environments. This sandboxed framework enables safe and controlled training and 

evaluation of RL agents. The defender agent’s task is to detect, respond to, and mitigate these 

attacks while minimizing resource usage and false positives. The agent observes network 

states including host logs, traffic summaries, and system alerts, which are encoded into state 

vectors. Action space includes decisions such as quarantining a host, deploying patches, 

rerouting traffic, or initiating deception measures. We framed the problem as an MDP with a 

sparse and delayed reward function where positive reinforcement is given for successful 

mitigation and negative reinforcement is applied for missed detections or unnecessary 

actions. 

We employed three RL algorithms for comparative analysis: Deep Q-Network (DQN), 

Advantage Actor-Critic (A2C), and Proximal Policy Optimization (PPO). Each model was 

trained over 10,000 episodes using ε-greedy exploration and experience replay mechanisms 

where applicable. Neural network architectures were tailored to encode temporal 

dependencies and environmental correlations, using LSTM layers for sequential log inputs 

and convolutional layers for network graph embeddings. Hyperparameter tuning was 

performed using grid search and Bayesian optimization techniques to identify optimal 

learning rates, discount factors, and batch sizes. To test generalizability, trained agents were 

exposed to previously unseen attack patterns and adversarial conditions. Metrics for 

evaluation included detection accuracy, average episode reward, response latency, and false 

positive rate. 
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Additionally, to understand the real-time applicability of our models, we deployed the trained 

agents in a live testbed using virtual machines running vulnerable services. The RL-based 

defenders interacted with the system through API hooks and log monitors, demonstrating the 

feasibility of real-time deployment. Logging and audit tools were used to record the agent's 

behavior, response times, and effectiveness under operational constraints. This methodology 

not only validates the utility of reinforcement learning in simulated environments but also 

highlights the pathways to integrating RL agents into existing enterprise security ecosystems. 

By capturing feedback from real-time operation, agents can continue to learn and adapt, 

enabling continual defense in an ever-changing threat landscape. 

III. Experimental Setup and Results 

 

Our experiments were conducted using two environments: a controlled simulation built with 

Cyber BattleSim and a live testbed composed of six interconnected virtual machines running 

Linux-based services. In the simulated environment, we trained each RL agent using an 80/20 

train-test split of predefined attack scenarios [4]. Performance metrics were logged every 100 

episodes to track convergence and policy improvement. In the live testbed, red-team activities 

were simulated using the Metasploit framework to test real-world adaptability. In simulation, 

the DQN agent achieved the highest detection accuracy (91%) after convergence at 

approximately 7,800 episodes. The PPO agent demonstrated better stability and faster 

convergence (5,500 episodes) but slightly lower accuracy (88%). A2C lagged behind in both 

convergence speed and final performance (84%). When tested on novel attack patterns, PPO 

maintained relatively high performance (86%) due to its ability to generalize across varying 

inputs, whereas DQN dropped to 78%, indicating potential overfitting to specific attack 

types. 

Latency analysis revealed that PPO responded to threats in under 120ms on average, making 

it more suitable for real-time scenarios. DQN showed longer response times (~200ms) due to 

its reliance on replay buffers, while A2C maintained moderate latency (~150ms). False 

positive rates were lowest in PPO (6%) and highest in A2C (11%), showcasing the 

importance of balanced exploration strategies in training. In the live testbed, agents 

responded to attacks like SSH brute force, web server exploitation, and unauthorized lateral 
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movement. PPO was most resilient in real-world deployments, maintaining consistent 

performance across test cases. Agents were integrated with a SOAR platform via RESTful 

APIs, enabling policy execution in a hybrid environment. The agents adapted to increased 

attack frequency and diversified threats, showing evidence of online learning capabilities 

through episodic retraining [5]. 

We also conducted ablation studies to evaluate the impact of reward structure and partial 

observability [6]. Dense reward schemes led to faster learning but higher false positives, 

while sparse reward structures promoted more cautious and effective behavior. When 

observation space was reduced to partial logs, all agents experienced a 10–15% drop in 

accuracy, emphasizing the need for high-quality monitoring and observability in real 

deployments. The experimental results collectively demonstrate that reinforcement 

learning—especially with policy-gradient-based methods—can provide adaptive, robust, and 

efficient cyber defense mechanisms [7]. However, training stability, safe exploration, and 

integration into operational environments remain areas requiring careful engineering and 

continued research. 

IV. Discussion 

 

The successful application of reinforcement learning in cyber defense hinges on several 

interrelated factors including environment modeling, algorithm selection, reward design, and 

system integration. Our findings indicate that while value-based methods like DQN offer 

high detection capabilities, their training stability and sensitivity to hyperparameters can be 

limiting in dynamic, adversarial settings. On the other hand, policy-gradient methods such as 

PPO present a more stable learning process and better generalization across unseen threats. 

One major insight from the research is the importance of simulating realistic attack 

environments. The fidelity of the training environment directly influences the agent’s ability 

to develop transferable skills [8]. Without diverse and evolving adversarial behaviors in the 

simulation, agents risk becoming brittle or myopic. Integrating red-team behavior, noise 

injection, and delayed feedback improved the realism and training efficiency of our RL 

agents [9]. 
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Another critical aspect is the reward engineering process. Sparse and delayed rewards more 

accurately mimic real-world cyber defense outcomes but increase the learning curve. Our 

experiments suggest that reward shaping must strike a balance between learning efficiency 

and behavior generalization [10]. Techniques such as curriculum learning, imitation learning, 

or reward relabeling may offer future enhancements in this area. The challenge of partial 

observability and noisy signals is also a barrier to practical deployment. In many real 

networks, defenders have limited visibility due to encrypted traffic, missing logs, or 

obfuscated attacks. To address this, future work could integrate recurrent neural networks or 

transformer-based architectures that can infer hidden states from sequence data, improving 

robustness under uncertainty. 

In operational contexts, integration with existing security infrastructure is crucial. Our 

deployment in a live testbed demonstrated the feasibility of embedding RL agents within 

SOAR systems for real-time decision-making [11]. However, ensuring explainability, safety, 

and human oversight remains essential, especially in high-stakes environments. Approaches 

such as inverse reinforcement learning and safe policy learning can help ensure alignment 

with human expectations and legal constraints. Overall, our research confirms the promise of 

reinforcement learning as a key enabler for adaptive cyber defense. As threats become more 

automated and intelligent, defense mechanisms must match this evolution with equally 

dynamic and learning-capable systems. The next frontier lies in federated RL, multi-agent 

coordination, and continual lifelong learning frameworks that mimic real-world security 

teams operating at scale and under pressure [12]. 

V. Conclusion 

 

In conclusion, this research demonstrates that reinforcement learning, particularly when 

implemented through advanced policy-gradient techniques like PPO, provides a robust and 

adaptive approach for automated cyber defense in dynamic attack environments. Through 

carefully designed simulations and live testbed deployments, we showed that RL agents can 

learn to detect and respond to complex threats with high accuracy, low latency, and strong 

generalization to novel attacks. While challenges remain in terms of real-time deployment, 

environment modeling, and reward tuning, our findings establish a strong foundation for 
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future integration of RL into cybersecurity infrastructures. As cyber threats continue to 

evolve in sophistication and speed, reinforcement learning offers a scalable, intelligent, and 

proactive solution for building resilient defense systems capable of adapting and improving 

autonomously over time. 
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