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Abstract

The rapid evolution of cyber threats and the complexity of dynamic attack environments have
rendered traditional rule-based security systems increasingly ineffective. This research
explores the application of reinforcement learning (RL) for the development of intelligent,
autonomous cyber defense mechanisms capable of adapting in real time to evolving attack
strategies. By modeling cybersecurity as a sequential decision-making problem, RL agents
learn optimal defense strategies through trial-and-error interactions within simulated
environments. We present a comprehensive framework integrating deep reinforcement
learning (DRL) with network intrusion detection and response systems to demonstrate the
viability of adaptive, automated defense. The research includes the design of training
environments using adversarial models, evaluation of agent performance under various attack
scenarios, and comparative analysis against static defense systems. Results reveal significant
improvements in detection accuracy, response efficiency, and resilience against novel threats,

underscoring the potential of RL as a core enabler of future cyber defense automation.
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I. Introduction

The complexity and dynamism of modern cyber threats demand adaptive defense strategies
that go beyond the capabilities of static rule-based systems. Attackers continually evolve their
techniques, leveraging zero-day exploits, polymorphic malware, and multi-stage attacks that

make detection and mitigation increasingly challenging. Traditional cybersecurity
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frameworks, while still essential, often suffer from delayed response, high false-positive
rates, and an inability to generalize across previously unseen threats [1]. As the scale and
speed of attacks grow, there is a critical need for intelligent systems capable of making
autonomous decisions under uncertainty. Reinforcement learning offers a compelling solution
to this problem by enabling systems to learn optimal defense strategies through continuous
interaction with a simulated or real environment. In RL, an agent learns by receiving rewards
or penalties for its actions, gradually improving its behavior to maximize long-term benefits.
This paradigm aligns naturally with cyber defense tasks where the environment is often non-
deterministic, adversarial, and partially observable. From adaptive firewall management to
intrusion response and deception tactics, RL can dynamically adjust policies based on real-

time feedback and threat evolution.

Recent advancements in deep reinforcement learning (DRL) have expanded the applicability
of RL to high-dimensional state spaces, enabling models to process complex network traffic
patterns and system logs. Techniques such as Deep Q-Networks (DQN), Proximal Policy
Optimization (PPO), and Actor-Critic models have shown promise in cybersecurity
applications. However, the integration of these techniques into practical security systems
presents unique challenges, including reward engineering, environment simulation, safe
exploration, and scalability [2]. The objective of this study is to investigate how DRL can be
employed effectively for automated cyber defense in environments characterized by dynamic,
evolving attacks. In this paper, we present a framework that models cyber defense as a
Markov Decision Process (MDP) and utilize DRL to train agents in a simulated network

environment containing diverse attack vectors.

By simulating red-team (attacker) versus blue-team (defender) scenarios, we evaluate the
agent's ability to learn proactive and reactive defense strategies. Our contributions include a
novel simulation setup, the implementation of multiple RL algorithms, and a comprehensive
evaluation of their performance under variable attack scenarios. We also analyze how reward
structure and environmental complexity influence learning and generalization. This research
aims to bridge the gap between theoretical RL models and their practical deployment in real-
world cyber defense infrastructures. By demonstrating tangible benefits in detection,
mitigation, and adaptation, we make a case for embedding RL agents within security

orchestration, automation, and response (SOAR) platforms [3]. Ultimately, we envision a

Page | 18 Journal of Integrated Research



»»%

RESEARCH

Volume- VI, Issue-Ill, 2025

future where cybersecurity is powered by continuously learning agents that evolve alongside
the threats they are designed to defend against.

Il. Methodology

To investigate reinforcement learning in automated cyber defense, we designed a simulated
network environment using the Cyber BattleSim toolkit—a Microsoft open-source
environment for training RL agents in cybersecurity tasks. The simulation consists of a multi-
host network topology with various services, vulnerabilities, and attacker behaviors modeled.
We incorporated multiple attack vectors such as privilege escalation, lateral movement, data
exfiltration, and denial-of-service, allowing for the dynamic representation of real-world
attack environments. This sandboxed framework enables safe and controlled training and
evaluation of RL agents. The defender agent’s task is to detect, respond to, and mitigate these
attacks while minimizing resource usage and false positives. The agent observes network
states including host logs, traffic summaries, and system alerts, which are encoded into state
vectors. Action space includes decisions such as quarantining a host, deploying patches,
rerouting traffic, or initiating deception measures. We framed the problem as an MDP with a
sparse and delayed reward function where positive reinforcement is given for successful
mitigation and negative reinforcement is applied for missed detections or unnecessary

actions.

We employed three RL algorithms for comparative analysis: Deep Q-Network (DQN),
Advantage Actor-Critic (A2C), and Proximal Policy Optimization (PPO). Each model was
trained over 10,000 episodes using e-greedy exploration and experience replay mechanisms
where applicable. Neural network architectures were tailored to encode temporal
dependencies and environmental correlations, using LSTM layers for sequential log inputs
and convolutional layers for network graph embeddings. Hyperparameter tuning was
performed using grid search and Bayesian optimization techniques to identify optimal
learning rates, discount factors, and batch sizes. To test generalizability, trained agents were
exposed to previously unseen attack patterns and adversarial conditions. Metrics for
evaluation included detection accuracy, average episode reward, response latency, and false

positive rate.
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Additionally, to understand the real-time applicability of our models, we deployed the trained
agents in a live testbed using virtual machines running vulnerable services. The RL-based
defenders interacted with the system through API hooks and log monitors, demonstrating the
feasibility of real-time deployment. Logging and audit tools were used to record the agent's
behavior, response times, and effectiveness under operational constraints. This methodology
not only validates the utility of reinforcement learning in simulated environments but also
highlights the pathways to integrating RL agents into existing enterprise security ecosystems.
By capturing feedback from real-time operation, agents can continue to learn and adapt,

enabling continual defense in an ever-changing threat landscape.

I11. Experimental Setup and Results

Our experiments were conducted using two environments: a controlled simulation built with
Cyber BattleSim and a live testbed composed of six interconnected virtual machines running
Linux-based services. In the simulated environment, we trained each RL agent using an 80/20
train-test split of predefined attack scenarios [4]. Performance metrics were logged every 100
episodes to track convergence and policy improvement. In the live testbed, red-team activities
were simulated using the Metasploit framework to test real-world adaptability. In simulation,
the DQN agent achieved the highest detection accuracy (91%) after convergence at
approximately 7,800 episodes. The PPO agent demonstrated better stability and faster
convergence (5,500 episodes) but slightly lower accuracy (88%). A2C lagged behind in both
convergence speed and final performance (84%). When tested on novel attack patterns, PPO
maintained relatively high performance (86%) due to its ability to generalize across varying

inputs, whereas DQN dropped to 78%, indicating potential overfitting to specific attack

types.

Latency analysis revealed that PPO responded to threats in under 120ms on average, making
it more suitable for real-time scenarios. DQN showed longer response times (~200ms) due to
its reliance on replay buffers, while A2C maintained moderate latency (~150ms). False
positive rates were lowest in PPO (6%) and highest in A2C (11%), showcasing the
importance of balanced exploration strategies in training. In the live testbed, agents

responded to attacks like SSH brute force, web server exploitation, and unauthorized lateral
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movement. PPO was most resilient in real-world deployments, maintaining consistent
performance across test cases. Agents were integrated with a SOAR platform via RESTful
APIs, enabling policy execution in a hybrid environment. The agents adapted to increased
attack frequency and diversified threats, showing evidence of online learning capabilities

through episodic retraining [5].

We also conducted ablation studies to evaluate the impact of reward structure and partial
observability [6]. Dense reward schemes led to faster learning but higher false positives,
while sparse reward structures promoted more cautious and effective behavior. When
observation space was reduced to partial logs, all agents experienced a 10-15% drop in
accuracy, emphasizing the need for high-quality monitoring and observability in real
deployments. The experimental results collectively demonstrate that reinforcement
learning—especially with policy-gradient-based methods—can provide adaptive, robust, and
efficient cyber defense mechanisms [7]. However, training stability, safe exploration, and
integration into operational environments remain areas requiring careful engineering and

continued research.

IVV. Discussion

The successful application of reinforcement learning in cyber defense hinges on several
interrelated factors including environment modeling, algorithm selection, reward design, and
system integration. Our findings indicate that while value-based methods like DQN offer
high detection capabilities, their training stability and sensitivity to hyperparameters can be
limiting in dynamic, adversarial settings. On the other hand, policy-gradient methods such as
PPO present a more stable learning process and better generalization across unseen threats.
One major insight from the research is the importance of simulating realistic attack
environments. The fidelity of the training environment directly influences the agent’s ability
to develop transferable skills [8]. Without diverse and evolving adversarial behaviors in the
simulation, agents risk becoming brittle or myopic. Integrating red-team behavior, noise
injection, and delayed feedback improved the realism and training efficiency of our RL

agents [9].
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Another critical aspect is the reward engineering process. Sparse and delayed rewards more
accurately mimic real-world cyber defense outcomes but increase the learning curve. Our
experiments suggest that reward shaping must strike a balance between learning efficiency
and behavior generalization [10]. Techniques such as curriculum learning, imitation learning,
or reward relabeling may offer future enhancements in this area. The challenge of partial
observability and noisy signals is also a barrier to practical deployment. In many real
networks, defenders have limited visibility due to encrypted traffic, missing logs, or
obfuscated attacks. To address this, future work could integrate recurrent neural networks or
transformer-based architectures that can infer hidden states from sequence data, improving

robustness under uncertainty.

In operational contexts, integration with existing security infrastructure is crucial. Our
deployment in a live testbed demonstrated the feasibility of embedding RL agents within
SOAR systems for real-time decision-making [11]. However, ensuring explainability, safety,
and human oversight remains essential, especially in high-stakes environments. Approaches
such as inverse reinforcement learning and safe policy learning can help ensure alignment
with human expectations and legal constraints. Overall, our research confirms the promise of
reinforcement learning as a key enabler for adaptive cyber defense. As threats become more
automated and intelligent, defense mechanisms must match this evolution with equally
dynamic and learning-capable systems. The next frontier lies in federated RL, multi-agent
coordination, and continual lifelong learning frameworks that mimic real-world security

teams operating at scale and under pressure [12].

V. Conclusion

In conclusion, this research demonstrates that reinforcement learning, particularly when
implemented through advanced policy-gradient techniques like PPO, provides a robust and
adaptive approach for automated cyber defense in dynamic attack environments. Through
carefully designed simulations and live testbed deployments, we showed that RL agents can
learn to detect and respond to complex threats with high accuracy, low latency, and strong
generalization to novel attacks. While challenges remain in terms of real-time deployment,

environment modeling, and reward tuning, our findings establish a strong foundation for
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future integration of RL into cybersecurity infrastructures. As cyber threats continue to
evolve in sophistication and speed, reinforcement learning offers a scalable, intelligent, and
proactive solution for building resilient defense systems capable of adapting and improving

autonomously over time.
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